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ABSTRACT

The wafer fusion technique for realization of compact waveguide switches, filters and 3D
photonic integrated circuits is investigated theoretically and experimentally. Calculations
based on the beam propagation method show that very short vertical directional couplers
with 40-220 µm coupling lengths and high extinction ratios from 20 to 32 dB can be
realized. These extinction ratios can be further improved using a slight asymmetry in
waveguide structure. The optical loss at the fused interface was investigated by
comparison of the transmission loss in InGaAsP-based ridge-loaded waveguide structures
with and without a fused layer near the core region. This reveals an excess loss of 1.1
dB/cm at 1.55 µm wavelength due to the fused interface. Fused straight vertical
directional couplers have been fabricated and characterized. Waveguides separated by 0.6
µm gap layer exhibit a coupling length of 62 µm and a switching voltage of about 12
volts. Since GaAs and InP have different material dispersion at 1.55 µm wavelength, a
combination of InP and GaAs couplers is used to demonstrate an inherent polarization
independent and narrowband filter.

Keywords:  Add/drop multiplexers, Integrated optoelectronics, Optical couplers, Optical
filters, Optical switches, Optical waveguide components, Wafer bonding.

1.  INTRODUCTION
A proliferation of various wavelength division multiplexing (WDM) components and
systems in recent years has permitted rapid increases in fiber optics network capacity
[1,2]. With the advent of Dense WDM (>80 wavelengths) and high-speed time division
multiplexed (TDM) systems (>10 Gb/s), there is an increasing need for replacing slow
and bulky conventional electronic routers and switches with photonic components.
Optical waveguide devices and photonic integrated circuits provide a compact and low
cost alternative for many network components.  Various material properties (electro-
optic, thermo-optic, acousto-optic etc.) in conjunction with active elements such as
semiconductor optical amplifiers and lasers can be used to achieve different
functionalities. Narrowband, polarization independent, low loss filters; low cross talk,
scalable, high-speed photonic switches; and tunable add/drop multiplexers and
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demultiplexers are in the wish list of every photonic network operator. In this paper we
describe a technique, wafer fusion, that can be used to overcome some of the
shortcomings of the conventional planar photonic integrated circuits. This method allows
for fabrication of three dimensional waveguide structures. In addition, materials with
very different lattice parameters and physical properties can be combined to make novel
devices with improved properties. In the following, we will first describe the wafer fusion
technique for combining GaAs, InP and Si based devices. Beam propagation method
(BPM) and coupled-mode theories are then used to study the theoretical performance of
fused vertical waveguide couplers, i.e. their coupling length and extinction ratio.
Experimental results for ultra short InP-based vertical couplers and switches are shown in
Section 4. We will then describe the use of InP and GaAs fused waveguides to achieve
polarization-independent narrow-band filters. The paper is concluded by a brief
discussion of the future work and prospects for other WDM components.

2.  WAFER FUSION
The technique of wafer fusion has been used to combine materials of very different lattice
constants that could not be grown by heteroepitaxy [3,4]. Materials such as GaAs, InP
and Si can be combined into a single device, without degrading the crystal quality away
from the interfaces. Each section of a device can be optimized using the material best
suited for its function. Examples are long wavelength vertical cavity surface emitting
lasers with InGaAsP active region and GaAs/AlAs mirrors [5,6], or high gain-bandwidth
product avalanche photodetectors with InGaAs absorption layer and Si multiplication
region [7]. In this paper we will describe use of wafer fusion to fabricate three-
dimensional photonic integrated circuits.

2.1. Semiconductor Wafer Fusion Technique
Wafer fusion is a process in which two wafers are combined to form a single unit without
the use of any intermediate layer such as epoxy or metal. Low electrical and thermal
resistance and small optical loss at interface permits fabrication of active devices with
fused layers inside. To achieve good fusion it is important that the two epitaxial surfaces
are first cleaned and passivated such that there are minimum contaminants on the surface.
Then the wafers are placed together in intimate contact under pressure (typically 2-3
MPa). Heating the wafers to near the growth temperature of one of the materials allows
atomic redistribution to occur at the surface, filling in any deviation from the ideal,
atomically smooth surfaces. After the wafers are cooled down, they should be strongly
bonded. Ideally, the inherent crystal defects arising from the mismatch in lattice constants
or surface states is localized exactly at the junction. In reality, wafer orientation and
thermal mismatches may introduce other types of defects. A study of low temperature
photoluminescence from quantum wells placed close to the fused InP/GaAs junction
suggest that the material away from the fused interface (>100 nm) is of very high quality
[3].

2.2. Optical Loss at Fused Interface
Realization of 3D photonic integrated circuits requires a detailed optical characterization
of the loss and uniformity of the fused interface. For this purpose, single mode waveguide
structures were fabricated based on metal-organic chemical vapor phase deposited
(MOCVD) material.  The structure consisted of 0.5 µm InGaAsP (λgap=1.3 µm) guiding
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Fig. 1 Different steps of
fabrication process for single
mode waveguide structure with a
fused interface near core region.
er, 0.24 µm cladding layer which includes two 0.1 µm InP layers and two 0.02 µm
aAsP (λgap=1.15 µm) etching stop layers, and finally 0.6 µm InP ridge layer. For the
pose of comparison, we use the same wafer and single mode waveguide geometry
h and without a fused interface near the core region.  The control waveguide has 3 µm
e and 0.6 µm high ridges defined using wet etching techniques.  To fabricate the

gle mode fused waveguide, two 1×0.8 cm2 samples are cut from the MOCVD grown
fer. First, the 0.6 µm InP layer and 0.1 µm cladding layer of one sample are removed
ng selective wet etching (Fig. 1); then 10 µm wide, 0.6 µm deep channels with 160 µm
cing are opened in a second sample.  The two samples are then fused at 630oC in a
rogen atmosphere for 30 minutes.  Subsequently, the InP substrate and 0.5 µm
ding layer of the top wafer are removed and 3 µm wide ridge waveguides are
ricated using wet etching.  Fig. 2 shows a stain-etched SEM picture of finished device.
e fused interface can not be seen in this picture. This is an indication of the high
lity of the fused interface.  The presence of the channels prior to fusion is crucial.
thout these channels, we could see microscopic voids at the fused junction and many
the fabricated waveguides did not show clear eigenmodes.

InGaAsP
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The Fabry-Perot resonance technique was used to measure the optical propagation loss
[8-11]. The optical loss of the unfused waveguide is about 2.4 dB/cm, while the fused
structure showed a loss of 3.5 dB/cm at 1.55 µm. Since the geometry and materials are
identical, the 1.1 dB/cm excess loss should be attributed to the fused interface.  BPM
calculations indicate that the field strength at the center of the fused interface is 49% of
the maximum field.  The issue of waveguide uniformity for large scale monolithic
integration is very important. The size of our fused wafers is about 1×0.8 cm2.  After
thinning and cleaving, the size of the sample for measurement is about 6×6 mm2.  The
yield of the fused waveguides is more than 90% that is almost same as unfused sample.
The existence of channels in fused sample provides 150 µm wide multimode slab
waveguides that contain a fused interface.  We did not notice any "dark" spots in these
multimode structures.

We have also investigated mass transport at the fused interface by comparing samples
with different effective fused areas.  In conventional fused structures, after fabrication of
narrow channels on one of the wafers prior to fusion, typically over 90% of the surface of
the samples is in contact during the fusion process. We studied samples where the fusion
was only over the surface on the top of waveguides (3 to 6 microns thickness, separated
by 125 microns, and about 1cm long).  In this case only 4% of the surface of the two
wafers is in contact during fusion.  We did not notice any substantial degradation or
nonuniformity in the ridge waveguide structure.

InP

fusion interface

InGaAsP

SiN

Fig. 2 The stain etched SEM picture of the single mode waveguide structure with
fused interface.



3.  VERTICAL COUPLERS

3.1. Multiple Level Interconnects
Conventional photonic integrated circuits rely upon a single plane of interconnect (Fig.
3a). Multiple layers of interconnection were developed in early days of electronic
integrated circuits as the circuit complexity increased. This development has not occurred
in photonics because the different layers have to be crystalline, and crystalline deposition
of low loss waveguides after patterning is difficult with epitaxy and impossible by
sputtering or evaporation (as is done in electronics). Combining planarized dielectric
waveguides with polymer or glass waveguides is an option. One has to match the indices
using grating or ARROW structures, and in addition one loses many advantages of active
amplifiers and other optical properties of semiconductors. We will see in the following
that wafer fusion can be used to combine planar waveguides fabricated on two different
substrates into a three-dimensional structure in which there is vertical coupling between
arrays of single mode waveguides (Fig. 3b).

Figure 3 (a) A conventional planar photonic integrated circuit. (b) 3D structures
based on wafer fusion and coupling between independent arrays of waveguides on
different substrate.

(a) (b)



Wavelength
(µµµµm)

Operating
Voltage (V)

Extinction
Ratio (dB)

Coupling
Length (µµµµm)

K. Tada et al.[12]

Univ. of Tokyo (1974) 1.15 10 no no
M. Cada et al.[13]

Nova Scotia, Canada (1989) 0.85 1 V/cm no 160
J. Cavaillℵℵℵℵ s et al.[14]

Philips, France (1989) 0.88 5 no 90-110
M. Kohtoku et al.[15]

Tokyo Inst. Tech. (1991) 1.57 20 no 170
F. Dollinger et al.[16]

Munich, Germany (1996) 0.854 5 > 10 85
B. Boche et al.[17]

Munich, Germany (1996) 0.86 4 > 16 no
B. Liu et al.[11]

UCSB, US (1998) 1.55 12 (2.8) ~ 15 62
S. Ikuta et al.[18]

Yokohama, Japan (1998) 1.55 - 350

Table 1 Some examples of waveguide vertical couplers and switches.

Despite the practical difficulty of separating the two input or output waveguides in
conventional high mesa vertical directional couplers, they have been studied by various
research groups [12-20] (see table 1). In fact vertical couplers are attractive candidates to
realize photonic switches and narrow band filters because of their very short coupling
length and feasibility of integration with other optoelectronic devices. In the following
we will analyze the theoretical performance of the fused vertical and conventional planar
directional couplers.

3.2. Beam Propagation Method Analysis
In order to calculate the coupling length
and the extinction ratio in 2D fused
waveguide structures a 3D finite
difference beam propagation program is
used [21].  The fused vertical coupler
(FVC) is shown in Fig. 4. A single-mode
ridge-loaded waveguide structure based
on InP substrate, with 0.5 µm InGaAsP
(λgap =1.3 µm) core region, 0.1 µm
cladding and 0.1 µm ridge height, is
vertically coupled through a fused gap
layer to an identical waveguide. The gap
layer thickness is varied from 0.1 to 0.6
micron with its index ranging from InP to
InGaAsP (λgap=1.4 µm) [48-49].

InP Substrate

InGaAsP

InP

InP Substrate

InGaAsP

InP

Gap LayerAir Air

0.5 µm
0.1 µm
0.1 µm
Fig. 4 The coupling region between
two fused waveguides.



10

100

3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55

0.1 µm
0.2 µm
0.3 µm
0.4 µm
0.5 µm
0.6 µm

C
ou

pl
in

g 
Le

ng
th

 (µ
m

)

index n
g

h
g

0

5

10

15

20

25

30

35

40

3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55

0.1 µm
0.2 µm
0.3 µm
0.4 µm
0.5 µm
0.6 µm

Ex
tin

ct
io

n 
R

at
io

 (d
B)

Index n
g

h
g(a) (b)
Fig. 5 The coupling length (a) and the extinction ratio (b) as a function of gap layer
index for different thicknesses of the gap layer(λλλλ=1.55 µm).
Fig. 5(a) displays the coupling length for different parameters of the gap layer.  As
expected, increasing the gap layer index reduces the coupling length.  In a coupled-mode
picture, this can be explained by an increase in the overlap integral of the two modes of
adjacent waveguides.  On the other hand, the dependence of the coupling length on the
gap layer thickness shows a mixed behavior.  When the gap region has small indices
close to InP layer, increasing its thickness will decouple the two waveguides and thus
increases the coupling length (see Fig 7a).  However, when the index of the gap layer is
large (close to 1.3 µm quartenary), the mode amplitude in this region is not anymore
exponentially decaying, but sinusoidal. So a thicker gap layer will increase the overlap
integral between modes of adjacent waveguides and thus reduces the coupling length (see
Fig. 7b).  When the gap layer thickness is more than 0.3-0.4 µm, an analysis based on the
supermodes of three coupled waveguide is more appropriate, but the appearance of
undesirable modes in the gap layer will deteriorate the performance of the directional
coupler.

Fig. 7 Cross section index and field profiles
for the vertical coupler with low-index gap
region (a) and high-index gap region (b).

Fig. 6 Supermodes of fused
vertical coupler for hgap= 0.4 µµµµm
and ngap=3.4.

(a) (b)



In order to quantify the effect of higher order modes, power transfer between two
waveguides was analyzed.  The eigenmode of one of the uncoupled waveguides was
taken for the input field, and power transfer to the other waveguide as a function of
propagation distance was monitored by BPM simulation. Fig. 5(b) displays the extinction
ratio defined as the ratio of mode powers in the two waveguides after a coupling length.
When the gap layer thickness and its index are high, the coupler has poor extinction ratios
of 5 to 10 dB.  In this case BPM simulation reveals 3 to 4 supermodes in the coupling
region (see Fig. 6).  In additional to the expected symmetric and antisymmetric
eigenmodes, there are modes of the gap layer and some leaky modes.  But for a wide
range of parameters (gap thickness from 0.2 to 0.6 µm, and gap index from 3.2 to 3.4),
extinction ratios of 20 to 32 dB can be achieved.  From Fig. 5(a) we see that this
corresponds to coupling lengths of the order of 40 to 220 microns.  Since the two
waveguides are very close, it is almost impossible to excite only one of them and to
measure the extinction ratio experimentally.  In practice, the two ridge structures will be
separated by curved regions and the on/off ratio is limited by unwanted coupling at
regions where the waveguides join together and non ideal fabrication process.  The above
analysis, however, shows the inherent limitation in extinction ratios.

In these symmetric ultra short couplers, the main problem to achieve low extinction ratio
is non-orthogonality of the modes of individual waveguides [22-27]. As the coupling
length decreases, the overlap integral between individual waveguide modes increases and
subsequently the extinction ratio deteriorates (see Fig. 8). It is interesting to note that the
extinction ratio (Pon/Poff) is approximately proportional to the square of the coupling
length (i.e. 10log(Pon/Poff) α 20 log(coupling length)). Using a slight asymmetry, one can
improve extinction ratios to arbitrary small values. An intuitive picture is that a slight
asymmetry can equalize the overlap integral of the single waveguide mode with the
symmetric and antisymmetric supermodes of the coupler and thus increase the extinction
ratio [28-29]. Another method to eliminate the crosstalk problems for ultra short couplers
is the use of tapering at input and output regions [30].
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3.3. Polarization and Wavelength Sensitivity

An important requirement for optical switches is polarization insensitivity.  The fused
vertical coupler shown in Fig. 4 has coupling length for TM polarized light at 1.55 µm
wavelength which is 7 to 13% shorter than the TE one.  Fig. 9 displays the polarization
sensitivity (i.e. the ratio of coupling lengths (TE-TM)/TE) calculated using improved
coupled mode theories [28,29,33]. It can be seen that thin gap layers are less polarization
sensitive than the thick ones. We will see in the following that it is possible to make the
switch polarization insensitive using the difference in materials dispersion e.g. by
combining GaAs and InP waveguides [31].

For many WDM applications, such as add/drop multiplexers and demultiplexers, one has
to study the wavelength dependence of the coupling length. Fig. 10 shows this
dependence for TE and TM polarizations for a 0.2 µm thick InP gap layer. A change of
operating wavelength by 80 nm, modifies the coupling length by ~20%. Thus, a
symmetric vertical coupler of 2.4 mm total length can demultiplexe two WDM channels
separated by 1nm. Methods used to produce flat-top response in planar structures by
making multi section coupling regions can also be used in these vertical couplers.

Vertical coupling through the ridge structure whose height is defined by etch-stopping
techniques is much less sensitive to the ridge waveguide width and sidewall smoothness
than the planar waveguide couplers.  In fact, the difficulty in making reproducibly and
uniformly very narrow gap (<1 µm) couplers have mitigated their development for ultra
short switching devices.  Fig. 11(a) shows the coupling length as a function of waveguide
width for the case of a conventional ridge-loaded structure with 0.5 µm InGaAsP (λgap=
1.3 µm) core layer, 0.1 µm InP slab layer and 0.2-0.4 µm InP ridge.  The centers of the
two waveguides are separated by 4-6 µm.  It can be seen that a change of 1 µm in
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waveguide width will change the coupling length by 20 to 40%.  When the same
waveguides are coupled vertically (Fig. 11(b)), the coupling length is about 1-2 orders of
magnitude smaller and at the same time less sensitive to waveguide width variation (4 to
5% change in coupling length for one micron change in waveguide width).

4. FUSED WAVEGUDIES
Having discussed the theoretical advantages of vertical couplers and the flexibility that
wafer fusion offers to realize such devices, in this section we will look at some
experimental results for ultrashort fused vertical couplers and switches.

4.1. Fused Vertical Coupler
The structure of the coupler is identical to that in Fig. 4, with 0.2 µm thick InP gap layer.
The material was grown by MOCVD and consisted of a 0.5 µm InGaAsP (λgap=1.3 µm)
guiding layer on InP substrate, followed by 0.1 µm InP cladding layer, 20 nm InGaAsP
(λgap=1.15 µm) etch stop layer and 0.4 µm InP coupling layer. To fabricate the vertical
coupler, two 8×10 mm2 samples are cleaved from the grown wafer. In the first sample the
top 0.4 µm InP layer is removed. On the second sample, a ridge waveguide structure is
fabricated using standard photolithography and selective wet etching. The ridges have 3-6
µm width, 0.4 µm height and they are separated by 125 µm. The two samples are then
fused together at a temperature of 630oC in a hydrogen atmosphere for 30 minutes.
Fig.12(a) shows the stain etched SEM picture of a finished fused vertical coupler (FVC).
The fused interface is not visible, even after staining.  There is mass transport at the edge
of the ridge.  This is beneficial to get a symmetric coupler and improves the side wall
flatness.
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The near field pattern at the output of FVCs, 5.5 mm long, is recorded by an IR camera
and is shown in Fig. 12(b). The light is input from an 8 µm diameter single mode 1.55
µm fiber. It can be seen that by changing the input wavelength, light is switched from the
upper to the lower waveguide.  Fig. 13 shows the intensities of the upper and lower
waveguides as a function of wavelength.  Our measurements show that the extinction
ratio can be > 15dB.  This is particularly difficult to achieve in conventional high mesa
vertical couplers [12-18].  From the oscillation period (about 12nm) and considering
material and waveguide dispersions, the index difference between the even and odd
modes can be calculated which is 0.0121. The corresponding coupling length is 62 µm at
1.55 µm that agrees very well with 58 µm result from BPM simulations.

0

0.2

0.4

0.6

0.8

1

1480 1500 1520 1540 1560
Wavelength (nm)

Fig. 13 Measured intensity of the upper (closed circle) and lower
(open circle) waveguides as a function of wavelength.
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Figure 12 (a) The stained etched SEM picture of a fused vertical coupler.
(b) Photograph of the near field pattern at 1530, 1533 and 1536 nm. The
width of the ridge is 3 µµµµm, and the distance between upper and lower
waveguides is 1.1 µµµµm.
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4.2. Fused Vertical Switch
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Fig. 14 Schematic drawing
of a fused vertical coupler
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e structure of the PIN fused vertical coupler is identical to the one in Fig. 12(a), the
y difference is that the top InP substrate is p-doped and the bottom wafer n-doped. To
port the narrow, 2 µm to 5 µm wide, 0.4 µm high ridges during the fusion process, 10
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200 µm using an HCl etchant. Then 300 nm gold was deposited on both sides for
lying the bias voltage.
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actual ridge waveguide, there is a large leakage current that can be reduced by etching
mesas and depositing metal only on the FVC ridge regions. When wafer fusion technique
is used to fabricate VCSELs and detectors [3,5-7], those devices are relatively small and
uniformity of the fused material is not so critical for individual device operation. To
make long waveguide couplers and switches, on the other hand, requires a good
uniformity of the fusion interface. We used electroluminescence images of FVC to study
the fusion uniformity under current flow. The near field pattern at the output facet of the
coupler was observed by an IR camera. The luminescence image of a 64 µm wide fused
area at 200 mA forward current did not show any dark regions and the intensity was very
uniform along the fused interface [32].

To characterize FVCs, a tunable laser is used to launch light at the input of the coupler
through an 8 µm diameter single mode fiber. The near field images at the output of a 3.5
mm long FVC for three reverse biases 0V, 1.8V and 3V are shown in Figure 15(b), along
with the normalized intensities of upper and lower waveguides. The linear electrooptic
effect at 3V is too small to explain the switching. We believe that the thermo-optic effect
plays a major role in this device because of the high leakage current that contributes to
internal heating of this structure. To conform this, we changed the stage temperature, and
switching is observed when 30°C temperature change. In order to reduce the leakage
current, we fabricated another FVC. In this case, one of the InP substrates is removed and
the electrodes are evaporated on the exact ridge area through narrow windows of a SiN
insulation layer. The I-V curve of a 7mm×3 µm FVC with this modification is shown in
Fig. 15 (a) (curve (ii)). As it can be seen in Fig. 16, a 12V reverse bias is needed to
achieve switching. The insert pictures show the near fields at different biases. Using
quantum well structures, the switching voltage can be further reduced.
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4.3. Asymmetric Fused Vertical Directional Coupler

In order to fabricate multi level 3D photonic integrated circuits, an asymmetric fused
structure is needed (see Fig. 17).  By repeating the fusion process, one can obtain
multiple layers of waveguide interconnects.  For fabrication, first, a set of ridge
waveguides on an InP wafer is defined using the usual wet and dry etching techniques.
Subsequently, a wafer is bonded on top of the waveguides.  After removing the substrate
of this top wafer using selective etching, a second set of waveguides is fabricated.  These
top waveguides are coupled vertically to the waveguides beneath them in areas where the
two structures are connected by wafer fusion.  The issue of alignment in the coupling
regions is facilitated using infrared photolithography.
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Fig. 17 Asymmetric fused vertical coupler



Even though the top and bottom waveguides are v
effective indices, one can theoretically achieve 
microns with 25 dB extinction ratio (see Figs. 18 (
cross section of the bottom and top waveguides al
at the output of an InGaAsP asymmetric coupler w
by 250 µm.

40

50

60

70

80

90

100

110

120

3.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55

h
g
=0.1µm

h
g
=0.2µm

h
g
=0.3µm

C
ou

pl
in

g 
Le

ng
th

 (µ
m

)

Index ng

16

18

20

22

24

26

28

30

3

Ex
tin

ct
io

n 
R

at
io

 (d
B)

Fig. 18 The coupling length (a) and the extin
gap layer index  for different thicknesses of 
fused vertical coupler.

Fig. 19 SEM pictures of the separated top a
an asymmetric fused vertical coupler.  The 
photograph of the near field pattern at the 
the two waveguides are separated by 250 µ

(a)
 (b)
ery dissimilar, by matching the mode
coupling lengths of the order of 60
a) and (b)).  Fig. 19 displays the SEM
ong with the near field infrared image
here the two waveguides are separated

.15 3.2 3.25 3.3 3.35 3.4 3.45 3.5 3.55

h
g
=0.1µm

h
g
=0.2µm

h
g
=0.3µm

Index ng

ction ratio (b) as a function of
the gap layer, for asymmetric

250µm

nd bottom waveguides for
bottom picture is a
output of the coupler where
m.



5. InP/GaAS FUSED FILTER
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tegrated compact and narrowband optical filters are key components for dense WDM
stems. Asymmetric vertical directional coupler filters [36-47] using two dissimilar
aveguides on III-V semiconductors are promising because of the precise control of
aveguide thickness and indices and monolithic integration with other devices. It is well
nown that the linewidth of the asymmetric directional coupler is inversely proportional
 both the device length and the difference of mode dispersion in the two waveguides.
o minimize the device length and reduce the sidelobes, the filter bandwidth can only be
arrowed by increasing the mode dispersion difference. The modal dispersion depends on
o factors. One is waveguide dispersion that depends on waveguide geometry; the other

ne is the material dispersion. Vertical coupler filters realized up to now use mainly the
aveguide dispersion difference. A narrow bandwidth filter requires one of the
aveguides to have a very small index difference between the core and the cladding, and

 large core size, while the other one should have a large index difference and a small
ore size (see Fig. 20).

o keep single mode operation and a high fiber coupling efficiency, the waveguide core
ze can not be too large or too small, and this limits the bandwidth of the filter. Very
issimilar waveguide structures have also strong polarization dependence that is a
isadvantage in fiber communication systems. Another major obstacle to apply
onventional vertical coupler filter to WDM systems is how to launch light into and
ouple out of two very close waveguides.



Fused vertical couplers, on the other hand, can combine different material systems.
GaAs/AlGaAs has a low material dispersion at 1.55µm, while InP/InGaAsP has large
material dispersion (see Fig. 21). With a proper design, a very narrowband and
polarization independent monolithic filter with separated inputs and outputs can be
realized.

The structure of the proposed fused vertical coupler filter is illustrated in Fig. 22(a). The
upper InGaAsP/InP waveguide consists of 0.4 µm InGaAsP (λgap=1.45µm) guiding layer,
and InP cladding layer. The lower AlGaAs/GaAs waveguide includes 0.53µm
Al0.1Ga0.9As core and 0.2 µm Al0.5Ga0.5As cladding layers. These two waveguides are
phase matched at 1.55 µm. The material dispersion of InGaAsP (λgap=1.45µm) is –0.48
/µm at 1.5µm which is almost one order higher than the material dispersion of

.
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Al0.1Ga0.9As –0.059 /µm. Fig. 22(b) shows the calculated modal dispersion of upper and
lower waveguides. Most of the wavelength dependence comes from material’s
contribution. In conventional structures, the polarization dependent wavelength shift is
about 30-40nm. In the current structure because of similar waveguide geometry and
dimensions, there is only 8 nm polarization dependent wavelength shift. By replacing the
λgap=1.45 µm InGaAsP quartenary with 1.37 µm one, the filter becomes polarization
independent. Since the material dispersion of 1.37 µm quartenary is little lower than that
of 1.45µm quartenary, a small bandwidth will be sacrificed in this structure.

Using 3D beam propagation method (BPM), the performance of fused filters is simulated.
When the separations of two waveguides ds=1.2µm, 1.6µm and 2µm, the corresponding
coupling lengths (100% power transfer) are 1mm, 4.5mm and 2cm and the bandwidths
are 4nm, 0.8nm and 0.2nm at the coupling length. As we expected, the central
wavelength is independent of the separation distance of two waveguides and the
bandwidth is inversely proportional to the coupler length. Because of uniform coupling,
there is a -9dB side lobe, which is too high for practical application. This can be resolved
by using X-crossing structures [42-44]. Fig. 23 displays coupling coefficient as a function
of propagation distance for X-crossing fused vertical coupler. The “gradual” coupling in
real space will result in better side-lobe suppression in frequency domain. Fig. 24 shows
the calculated response of the X-crossing structure with an angle θ=0.16o using coupled
mode theory. One can see that the side lobe is suppressed to more than -40dB, which is
sufficient for the requirement of most WDM systems. One should note that the
fabrication of X-crossing vertical coupler filter structure with separated inputs and
outputs is very easy with the use of wafer fusion technology.
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We have fabricated a fused straight (θ=0o) vertical coupler filter based on MBE grown
GaAs and MOCVD grown InP waveguides. The structure is shown in Figs. 22(a) and 25.
The separation of two waveguides is 1.2 µm, which corresponds to 1mm coupling length.
A 1 mm long device has been measured. Fig. 26(a) shows the measured response, the
3dB bandwidth is 3.6 nm, which agrees well with theoretical value of 3.9 nm. The
measured coupling efficiency (the optical power from the output waveguide divided by
the sum of the optical power from both the output and input waveguides) of the current
device is about 50%. The polarization dependent wavelength shift is only 5 nm.
Theoretical calculations predict a 7nm shift. This polarization dependence can be
eliminated with a proper design. To optimize the design of fused InP/GaAs coupler, one
should take into account material losses. The bandgap of InGaAsP guiding layer is closer
than GaAs/AlGaAs material to the operation wavelength at 1.55µm. One thus expects
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larger band-to-band absorption in InGaAsP waveguides. However in doped materials,
free carrier absorption increases and dominates when the wavelength is farther from the
bandgap. We have measured 4-6dB/cm optical propagation loss for both InP/InGaAsP
and GaAs/AlGaAs waveguides at 1.55µm. We did not notice a substantial increase in
loss for the lower bandgap material InGaAsP. The fusion process adds 1-3dB/cm loss
[11].

6.  SUMMARY AND CONCLUSION

In conclusion, wafer fusion technique for fabrication
described. Very short directional couplers with a co
high extinction ratios of 20 to 32 dB can be realiz
further increased using a slight asymmetry in wave
input and output regions.  It is shown that 1.1 dB/cm
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to fusion process in InP based waveguides at 1.55 µm wavelength.  Fused straight
vertical directional couplers separated by 0.6 µm gap layer exhibit a coupling length of
62 µm and a switching voltage of about 12 volts.  These fused waveguides give us the
added advantage of vertical dimension by separating the input and output waveguides to
realize compact and scalable 3D photonic integrated circuits.

This technology can be extended to a whole family of devices, from couplers and
switches to filters and tunable lasers. Additional levels of interconnect can be
demonstrated, allowing additional complexity to future photonic integrated circuits.
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